
AniTMT Hackers guide I � Animation
System

Contents

1 Introduction 1

2 Program structure 1

3 Sequence of Execution 2

4 The AniTMT Solve System 2

5 File Reference 3

1 Introduction

This Program is still in an early stage but we are pleased about any kind of feetback.
We are very sorry about the few comments in the source yet.

For a reference to code �les we only use the �lename of the header �le (.hpp) even
if we also talk about the implementation (.cpp).

2 Program structure

The Mother of the object hierarchy is an object of the class Animation (anitmt.hpp). It
contains an object for the global options, a list of script objects, a list of scenes and a list
of �les that only have to be copied. The global options my be de�ned as command line
parameter or within ini �les(globals.hpp). The virtual base class for script objects
is declared in script.hpp and the derived class for adl scripts � the only animation
description language already implemented � is situated in adl.hpp. The scene objects
(scene.hpp) may contain a list of comonents that may contain a list of functions that
may contain a list of subfunctions (ani_base.hpp). All these objects are derived from
a class called Linked_Valtree that is again derived from Valtree (valtree.hpp). The
Valtree class provides this tree behaviour where each node has a list of child Valtrees
and a list of properties that have a name a general value type for scalars, vectors or
strings (vals.hpp). With the aid of a list of property solvers each Valtree provides the
method solve_property(name) to solve for one property. Each Linked_Valtree node
within this object hierarchy additionally knows his previous and next de�ned node. This
is used by functions that solve properties with the help of neighbour Linked_Valtrees
(see chapter 4).

All functions with its subfunctions are derived from the classes de�ned in ani_base.cpp.
One example is the move function for objects (object.hpp). The general subfuntion

1

class Subfunc_Move_object provides the functions to make it possible to solve for the
properties that are common for all track elements. In order to calculate the resulting
position it declares some pure virtual functions that have to be implemented by each
specialized track like a straight element (straight.hpp) or a circle (circle.hpp).
These �les are very important to improve AniTMT. Each child type has to be in-
serted in one function of the parent. To add a new function you have to insert it
into Component::get_function() in ani_base.cpp. If you want to add a new track
type for the move function you have to add it in Move_Object::get_subfunction() in
object.cpp. Then you may copy the source for the straight track element and modify
it. If you would like to add property solver for a continuously accelerated system you
may use the add_accelerated_solver() function.

Finally the results of each Component has to be written into �les. This is scene type
and component type dependant. That is why each scene provides scene adapters for
each component type (scalar, vector or object). These adapters provide component type
speci�c interfaces to set the result and scene speci�c parts that detect components in
the scene description �les and write the result in the correct �le.

3 Sequence of Execution

The program starts in main.cpp. It only creates an object of the main Animation
class (anitmt.hpp) and calls the start method with the command line parameters as
argument. This function orders to interprete the arguments, to read the �les, to solve
the animation, to write down the results and to copy the needed �les.

At �rst all scripts and non moving scenes de�ned by command line parameters or ini
�les are added. Afterwards the program reads the script �les and adds more scenes with
the whole object tree of included components, functions and subfunctions. Then there
go some function calls through the whole object tree to solve for unde�ned properties
(see chapter 4). Another function call follows for each frame to calculate the non-moving
scenes and write them to �les. Afterwards all other �les needed for the rendering process
are copied to the animation directory.

4 The AniTMT Solve System

Valtree is the base class of all elements in the main object hierarchy. It provides a
mechanism to solve for any property of an element. Therefore property solver may be
added that know all the possibilities to solve for a speci�c property. The solvers are
stored in a std::multimap called Valtree::property_solve. During the solve process
a map of search_infos stores which properties are locked because they are already in
the search path and wheather the property has to try to solve itself again. Therefore
it stores an id that is increased everytime a property is solved. If the id didn't change
since the last trial a property doesn't try to solve itself again. You can �nd some simple
property solvers in scalar.cpp. They all start with SCA_Solve_\dots.

2

In the object tree of the scenes every element is even derived from Linked_Valtree.
This class provides a solve system that isn't limited to one element. This is for exam-
ple very useful for animation functions with concatenated tracks. Two atteched track
elements should have the same time and position between them. Moreover it could be
useful to have the same direction or even speed. The Linked_Valtree provides therefor
a solve system that works on di�erent priorities. On each priority level an element may
pass some properties to it's neighbours which will take it if they couldn't solve for the
corresponding property. The set_priority() function increases the number of priority
levels if nessessary. Each element that wants to take part in this communication has
to overload the virtual function send_command(). You can �nd a interesting one in
object.cpp but the basics may also be seen in scalar.cpp.

Additionally Linked_Valtrees provide functions to set properties by default. This
is also done in di�erent levels. To make use of this an element needs an implementation
of allow_default(). The most intresting one should also be in object.cpp.

The function that controles all these priority leves is called Animation::solve()

and resides in anitmt.cpp.
Finally the funtion Animtion::calc() in anitmt.cpp starts the execution of calc_res()

of all elements that has to calculate the �nal positions and values for each frame. In
scalar.cpp you can �nd an implementation of Linear_Change_Scalar::calc_res()

that calculates a linear interpolation. In object.cpp is a very general implementation
Subfunc_Move_Object::calc_res() that provides a track independant calculation of
accelerated movement and rotation so that all concrete track types only have to imple-
ment some special functions to get the real position and directions. There is a short im-
plementation of the �ve functions get_pos(), get_front(), get_up(), get_end_up()
and get_first_up (default up) in staight.cpp.

5 File Reference

The following tables give a brief information about all Objects of anitmt-calc. The
corresponding �le with the .hpp extension is the declaration and the �le with the .cpp

extension is implementation.
Files of AniTMT:

3

Object without extension Description

main main() function that only calls Animation::start()

anitmt Main object Animation with initial calls
globals Class for global animation options de�ned by the user
copy Class for �les that only have to be copied

script Base class that handles animation script �les
adl Derived Class that handles adl scripts

valtree This class is used for nodes in a object hierarchy where
every node owns a list of child nodes and a list of prop-
erties

scene Base class that handles source scenes; all scenes are the
root of a valtree object hierarchy

povscene Derived Class that handles POV-Ray scenes
ani_base Basic object hierarchy within a scene (Component,

Function, Subfunction)
scalar Scalar functions (change { linear and accelerated })
object Object functions (only move at the moment) and the

basic subfunction that provides track independant ac-
celerated movement and rotation

straight Subfunction for move for straight track elements
circle Circular track elements for move

accel This is very useful for subfunctions to provide accel-
erated systems like: length, startspeed, endspeed,
acceleration and duration

utils Templates to delete all elements of lists or maps
p_aninfo Parser info to provide access from expressions to val-

ues of the internal animation structure like references to
other expressions

Independant Utilities of AniTMT with an expession Parser:

4

Object without extension Description

error My basic error class with or without position informa-
tion

vals Basetype values::Valtype that can be one of scalar, vec-
tor or string and may be calculated with all common
operators.

mystream Character and word streams (Tokenstreams)
parser Provides a Parser that can read any expressions with

scalars, vectors and strings in any word stream
parsinfo Some basic parser infos that may be inserted in parser

objects to provide constants or functions like sin, etc. . .
files File classes for word streams and precompiled �les with

#include directives that may be changed while copying
constant Konstants like pi and e

vector3 Vector library of Roberto Javier Peon (LGPL)
vector Puts the vector library into namespace vect

matrix Basic matrix library especially for rotations
ini Read and write functions for ini �les with sections and

options

5

